

TAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF NATURAL AND APPLIES SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE				
QUALIFICATION CODE: 07BOSC	LEVEL: 5			
COURSE CODE: GNP501S	COURSE NAME: GENERAL PHYSICS 1A			
SESSION: JULY 2019	PAPER: THEORY			
DURATION: 3 HOURS	MARKS: 100			

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	Dr Sylvanus A. Onjefu			
MODERATOR:	Prof Dipti R. Sahu			

	INSTRUCTIONS
1.	Answer ALL the question
2.	Write clearly and neatly
3.	Number the answers clearly

PERMISSIBLE MATERIALS

Non-programmable Calculator

ATTACHMENT

None

THIS QUESTION PAPER CONSISTS OF 6 PAGES

(INCLUDING THIS FRONT PAGE)

SECTION A

QUESTION 1				[40]		
Suggested Ques	tion Types: Multiple	Choice/Objectives				
Each question in	n this section carries	two marks				
1.1 The dimension of volume is given by;						
A. L ³	B. L ² T ²	C. dimensionless	D. MLT ⁻¹			
1.2 is the unit of force.						
A. W	B. Hz	C. N	D. NS			
1.3 One of these	is the dimension of	acceleration.		(2)		
A. ML ²	B. ML ² T ⁻¹	C. M ² T ²	D. M°LT ⁻²			
1.4 One of the following is an example of a scalar quantity.						
A. force		B. magnetic flux				
C. mass		D. electric field intensity				
		ck with a constant speed. V	Vhich of			
the following	statements are true	concerning this motion?		(2)		
	age speed is zero.					
1000	eleration is zero.	he centre of the circle.				
A. only I is tr		B. only II is true				
C. only III is to	rue	D. both II and III are true				
1.6 How long wo	ould it take a car that	starts from rest and accele	rates uniformly			
		r a distance of 14 m?	*	(2)		
A. 15.0 s	B. 30.5	s C. 9.8 s	D. 3.1 s			

	7 A soccer ball, at rest on the ground, is kicked with and initial velocity of 12 m/s at a launched angle of 35° to the horizontal plane. Determine its time to reach the top of its accent, assuming that its air resistance is negligible.						
,	A. 0.5 s	B. 1.0 s	C 1.7 s	D. 0.7 s			
1.8	Power is measured in:				(2)		
	A. W s ⁻¹	B. W	C. m/s	D. W ²			
1.9	One of these statements	is not true for	Universal gravitation	constant, G.	(2)		
B C	it is a constantacceleration due to grait is a scalar quantityUse Boyle's meter invo		cts to determine				
1.10	is a method of d	etermining acc	eleration due to gravi	ty, g.	(2)		
	A. Spring balanceB. Simple pendulum involving one object.C. Intrinsic method.D. Beam balance						
1.11 Determine the density of copper if a copper ball with radius 1 cm has a mass of 37.3 g.							
	A. 7.77 x 10 ³ kg.m ⁻³ C. 8.88 x 10 ³ kg.m ⁻³		B. 44×10^2 g D. 1×10^2 g				
1.12	1.12 Calculate the volume of an ice block with mass of 2460 g and density 917 kg/m³.						
	A. 2.68 x 10 ⁻³ m ³ C. 19.3 x 10 ⁻³ m ³		B. 3.1 x 10 ⁴ m ³ D. 2.0 x 10 ³ cm				
1.13	A streamline flow is als	o called			(2)		
	A. Laminar flow C. Volume flow		B. Turbulent flow D. Bernoulli's flow				

1.14	14 A steel bar is precisely 1.60 m at 25° C. Its length is then increased to 1.64 m? Determine its initial temperature in Kelvin.					(2)		
	A. 2	273	B. 198		C. 25		D. 298	
1.15	When	a liquid free:	zes to become	a solid:				(2)
	A. it absorbs energy C. its temperature decreases				B. its temperature increases D. it emits energy			
1.16	steel cu		required to rai to 50°C if the °C.					(2)
	A. 200	J	B. 400 J		C. 800 J		D. 1000 J	
			that is tangen					(2)
	_	lar force ipetal veloci	ty		. centripe . centripe	tal accelera tal force	ation	
1.18		. Is the total	time taken by	a vibrat	ing body	to make on	e complete cycle.	(2)
	A. amp	olitude	B. crest	C. pe	riod	D. frequ	iency	
		7.*/.	n along a hori oor. Calculate				ce of 15 N which	(2)
	A. 15	60 J B	. 1.5 J	C. 75	J	D. 120 J		
1.20			e velocity of a h = 6.4 x 10 ⁶ n				avitational field.	(2)
	A. 11	.200 m/s	B. 62720000	m/s	C. 1254	40000m/s	D. 653061 m/s	
SECT	ION B							
QUE	STION 2	2						[20]
DIMI	ENSION	S						
2.1	Derive t	he dimensio	ns of:					
(i) G) Gravitational potential energy						(3)	
(ii) P	ressure	:						(3)

. . .

(iii) Momentum (3)(3)(iii) Universal gravitational constant 2.2 The force F of the wind on the car is certainly affected by the speed v of the car, density p and the surface area A of the car directly exposed to the wind's direction. Use dimensional analysis to show the equation of force. (8)**QUESTION 3** [20] VECTORS AND SCALARS, ONE AND TWO DIMENSIONAL MOTION 3.1 Use the scalar product to determine the angle between the two vectors. (5) $\bar{\mathbf{A}} = 2 \mathbf{i} - 2 \hat{\mathbf{j}} + \mathbf{k}$ and $\bar{\mathbf{B}} = -4 \mathbf{i} + 2 \hat{\mathbf{j}} - 3 \mathbf{k}$ 3.2 Given that: $\overline{A} = -1 + 2 = -2 \text{ k}$, find the magnitude of \overline{A} , and the unit vector in the direction of \overline{A} . (3)3.3 Show the derivation for the expression $v^2 = u^2 + 2as$: (4)3.4 A passenger plane accelerated to rest down a runway at a constant deceleration of 2 m.s⁻². 3.4.1 Determine the velocity and position of the plane 8 seconds after it comes to a complete stop. (4)3.4.2 A car moves from rest with and acceleration of 0.9 m/s/s. Find its velocity when it has moved a distance of 42.3 m. (4)**QUESTION 4** [20] WORK, ENERGY AND POWER, CIRCULAR MOTION, SIMPLE HARMONIC MOTION AND UNIVERSAL GRAVITATIONAL AND FLUID PRESSURE 4.1 Determine the work done when an object of mass 7.5 kg falls vertically at a height of 4 m. (3)4.2 Show that power is equal to the product of force and velocity. (3)4.3 A CD starts from rest and accelerates to an angular frequency of 3 rev/s. Determine the disc's average period T and centripetal velocity V_c of the edge

(4)

of the a disc when the radius is 4.0 x 10⁻² m.

- 4.4 A spacecraft of mass 450 kg land on planet Jupiter. Calculate Jupiter's gravitational acceleration, g, on the spacecraft. [Take mass of Jupiter = 1.89×10^{27} kg, radius of the Jupiter = 6.99×10^{7} m, G = 6.67×10^{-11} Nm 2 kg $^{-2}$]. (4)
- 4.5 Show that pressure in fluid depends on depth and density, $P = \rho hg$. (4)
- 4.6 Calculate the length of the liquid in a barometer tube that would support an Atmospheric pressure of $3.06 \times 10^5 \text{ Nm}^{-2}$ if the density of the liquid is $1.36 \times 10^4 \text{ kgm}^{-3}$ (g = 10m/s^2). (2)

End